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Abstract: An ultra-wideband polarization-insensitive frequency selective surface (FSS) absorber is
proposed for S to K-band applications. The absorber comprises two compensation slabs, a lossy
FSS layer and a grounded dielectric plate. The FSS unit cell is a combination of a second-order
Chinese knot and a cross. To enhance the bandwidth and angular stability of the single-layer FSS
absorber, a compensation layer composed of FR4 and polymethyl methacrylate (PMMA) slabs is
incorporated. The proposed FSS absorber demonstrates a remarkable absorption rate of over 90%
within the frequency range of 3.1–22.1 GHz, exhibiting a fractional bandwidth of 150.8%. Even
when subjected to an oblique incidence of 45◦, the absorber maintains an 80% absorption rate in
the frequency range of 4.4–19.1 GHz for both TE and TM polarizations. The total thickness of the
FSS absorber is 0.0848 λL (the wavelength at the lowest cutoff frequency), and only 1.08 times the
Rozanov limit. To validate the design, a prototype of the proposed absorber was fabricated and
measured. Good agreements were observed between the simulations and measurements.

Keywords: absorber; frequency selective surface; single-layer; thin; ultra-wideband

1. Introduction

Frequency selective surface (FSS) absorbers offer several advantages over traditional
electromagnetic wave absorbing materials and structures, including a low profile, broad-
band absorption [1] and a flexible structural design [2]. Consequently, they have found
extensive application in various fields such as radar cross-section reduction (RCS) [3,4],
electromagnetic interference suppression [5–7], antenna gain enhancement [8], and stealth
technology [9]. The continuous advancements in radar and wireless technologies have
sparked researchers’ interest in developing FSS absorbers with ultra-broadband capability,
high angle stability, ultra-thinness, and strong absorption.

Multi-layer FSS structures are commonly utilized in the design of ultra-wideband FSS
absorbers [10–12]. For example, Zheng et al. [10] proposed a three-layer FSS absorber that
achieves a 90% absorption bandwidth ranging from 2.2 GHz to 18 GHz (156.4%), with a
thickness of 0.088 λL (wavelength at the lowest frequency). It also demonstrates angular
stability of 40◦ for TE polarization and 60◦ for TM polarization. Another three-layer FSS
absorber designed by Gao et al. [11] exhibits a 90% absorption bandwidth covering 2 GHz
to 23 GHz (168%) and maintains absorption levels exceeding 90% at 45◦ oblique incidence,
with a thickness of 0.1 λL. Additionally, Sun et al. [12] successfully created a two-layer FSS
absorber with a 90% absorption band of 2.79–20.62 GHz (152%). It possesses a thickness
of 0.115 λL and offers angular stability of up to 60◦ for both TE and TM polarizations.
However, the design of multi-layer FSS absorbers is challenging, and there is a risk of
performance degradation in practical applications due to alignment errors between the FSS
units in each layer, especially when the period of each layer varies.

Single-layer FSS absorbers can effectively address these issues. The combination of
multi-resonant structures and compensation dielectric slabs have gained popularity [13–17]
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in the design of wideband single-layer FSS absorbers. Cao et al. [13] proposed an ultra-
broadband single-layer FSS absorber using the novel concept of an “impedance well”. This
absorber incorporates 16 lumped elements in each unit cell and achieves a 90% absorption
band from 0.45 GHz to 2.34 GHz (135.5%). Sheokand et al. [14] presented a resistive film
FSS absorber that utilizes interdigital capacitance with a square ring and four patches. This
design provides over 90% absorption in the frequency range of 4–17.2 GHz, with a thickness
of 0.08λL and an 80% absorption angular stability of up to 40◦. He et al. [15] introduced
a FSS absorber with two dielectric compensation layers to enhance its bandwidth. This
absorber achieves a 90% absorption bandwidth from 2.3 GHz to 13.3 GHz (141.0%), with
an angular stability of up to 45◦, albeit with a relatively higher thickness of 0.138λL. By
replacing the lossless compensation layers with a patterned lossy light honeycomb layer,
the bandwidth of the absorber is extended to 2.89–18.0 GHz (144.7%) [16]. Furthermore,
Zhao et al. designed an optically transparent flexible absorber using a single-layer FSS and
a single-layer dielectric compensation layer [17]. This absorber achieves a 90% absorption
bandwidth of 135.5% (5.61–29.17 GHz), with an angular stability of 30◦ and 60◦ for TE
and TM polarizations, respectively. While ferromagnetic materials have shown promise in
designing ultra-broadband ultra-thin broadband FSS absorbers [18], their high density and
dispersive electromagnetic characteristics limit their applications. Thus, it is still a great
challenge to design ultra-wideband angle-stable thin absorbers by using only single-layer
FSS structures.

In this paper, an ultra-wideband thin absorber based on a single-layer indium tin oxide
(ITO) FSS is proposed. The miniaturized FSS unit cell consists of a second-order Chinese
knot combined with a cross, enabling multiple current paths and achieving impedance
matching across a wide frequency range. To enhance bandwidth and oblique incident angle
stability, a compensation layer composed of FR4 and polymethyl methacrylate (PMMA)
slabs was incorporated. The proposed FSS absorber demonstrates over 90% absorption
in the range of 3.1–22.1 GHz (150.8%) for normal incidence. Even at an incident angle of
45◦, the absorber retains over 80% absorption in the range of 4.4–19.1 GHz for both TE and
TM polarizations. Moreover, the thickness of the absorber is only 0.0848λL, approximately
1.08 times the Rozanov limit [19]. Finally, a prototype was fabricated and measured. Good
agreements between the simulations and measurements were observed.

This paper is organized as follows: the design evolution and analysis of the proposed
absorber is presented in Section 2, followed by its performance evaluation in Section 3,
where incident angle stability and the effects of sheet resistance fluctuation on the perfor-
mance of the absorber are explored. The physical experiment is implemented for validation
of simulation results in Section 4. Finally, the conclusion is drawn in Section 5.

2. Design and Analysis of the Absorber

The configuration of the proposed FSS absorber is illustrated in Figure 1. The absorber
consisted of several layers including a FR4 dielectric slab, a PMMA slab, a resistive film
FSS layer, a polymethacrylimide (PMI) foam, and a metal ground plate. The PMI foam,
which had a low relative dielectric constant of 1.06, was positioned between the metal
ground and the FSS layer. The meticulously designed FSS layer was constructed using
ITO film, with a sheet resistance of 36 Ω/sq. The ITO film was deposited on a substrate
made of polyethylene terephthalate (PET), which had a relative dielectric constant of 3
and loss tangent of 0.06. It is worth noting that other types of resistive film with the same
sheet resistance can be utilized to fabricate the lossy FSS layer, but ITO is preferred for its
commercial availability. In order to ensure angular stability and to improve the bandwidth
of the absorber, two additional dielectric slabs were incorporated. The first was a FR4
slab, which possessed a relative dielectric constant of 4.3 and a loss tangent of 0.025. The
second was a PMMA slab with a relative dielectric constant of 2.55 and an exceptionally
low loss tangent of 0.0002. The strategic arrangement of these layers aimed to optimize
the absorbing characteristics of the proposed single-layer FSS absorber while considering
factors such as bandwidth enhancement and incident angular stability.
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Figure 1. The unit cell topology of the proposed FSS absorber: (a) unit cell and (b) FSS pattern.

2.1. Design of the FSS Unit Cell

To achieve a broadband, angle-stable, and polarization-insensitive FSS absorber, the
unit cell pattern must possess characteristics such as miniaturization, 90-degree rotational
symmetry, and diverse current paths for multiple resonances in a wide frequency range.
Therefore, a folded square ring derived from a one-order Chinese knot combined with a
cross was employed as the initial FSS unit cell (shown in Figure 2a). The reflection coefficient
and input impedance of the absorber composed of the initial FSS and a grounded PMI foam
with thickness of 5.5 mm were simulated using commercial software CST 2019 [20], and
the results are illustrated in Figure 2b,c, respectively. The absorption rate can be given as

A( f ) =
(

1− |S11|2 − |S21|2
)
× 100% (1)

where |S11| and |S21| are the reflection and transmission coefficients of the absorber. For
an absorber grounded with a metal plate, electromagnetic waves cannot transmit through
the absorber. Thus, |S11| < −10 dB resulted in over 90% absorption, and |S11| < −7.0 dB
led to over 80% absorption.
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Figure 2. Initial unit cell geometry (a). Reflection coefficient (b) and input impedance (c) of the
absorber composed of different FSS structures. Current density distribution at 5 GHz (d).

In Figure 2b, the absorber composed of only a one-order Chinese knot (structure I)
exhibited a −10 dB bandwidth of (6.5–18.0) GHz (93.9%), while the absorber with the cross
(structure II) did not show any resonance within this frequency range. However, combining
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these two structures (structure III) enhanced the −10 dB bandwidth. This enhancement can
be attributed to the impedance variation observed in Figure 2c. For example, the resistance
of structure I was initially less than 200 Ω at 5 GHz. However, upon introducing the cross,
the resistance increased to approximately 225 Ω, while the reactance decreased to approach
zero simultaneously. This variation occurred because the cross pattern not only provided
an additional current path at 5 GHz, but also connected the separated branches of the
Chinese knot together, as shown in Structure III in Figure 2a. As a result, the induced
current distribution along the inner branches of the Chinese knot was enhanced at 5 GHz,
as illustrated in Figure 2d. All these current distributions contributed to the impedance
variation, improving the impedance matching at 5 GHz.

Figure 3 provides the reflection coefficient of the absorber composed of FSS structure
III at different incident angles (θ). In the case of TE polarization, as the incident angle θ
increases, the reflection coefficient also increased, accompanied by a slight shift in the fre-
quency band, as shown in Figure 3a. However, for TM polarization, the −10 dB bandwidth
significantly shifted to higher frequencies, as depicted in Figure 3b. This shift was caused
by the changes in both the input impedance and wave impedance in free space, which
became 377 Ω/cosθ for TE and 377 Ω·cosθ for TM polarizations, respectively [21]. For TE
polarization, the input impedance remained almost unchanged in terms of its real part
with respect to the incident angle θ in the frequency range below 16 GHz. However, its
imaginary part gradually increased, as shown in Figure 4a, leading to an increase in the
reflection coefficient. On the other hand, for TM polarization, both the real and imaginary
parts of the input impedance varied with the incident angle θ, but in an opposite manner
in the frequency range below 18 GHz, as illustrated in Figure 4b.
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(b) TM polarizations.
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2.2. Design of the Compensation Layer

To improve angular stability and further enhance the bandwidth of the initial absorber
(structure III), a compensation dielectric slab was introduced on top of the absorber. This
compensation layer can be considered as an impedance matching layer, and thus its
thickness (hs) was determined according to the cancellation of reflections from its two
interfaces A and B, as shown in Figure 5a. The thickness of the slab is thus given as

hs =
λ0

4
1√

εr − sin2θ
(2)

where λ0 is the center frequency of the interested band, and εr is the relative dielectric
constant of the slab. Here, a FR4 substrate was chosen as the compensation slab, with an
interested frequency band of (4.0–24.0) GHz. Thus, the thickness of the slab was calculated
as hs = 2.75 mm, but for fabrication tolerance and overall thickness consideration, a 2.5 mm-
thick FR4 slab was used as the compensation layer. However, when the compensation
layer was introduced, the reflection coefficient of the FSS absorber (shown in Figure 5b)
became larger than −10 dB in the frequency range from 10.1 GHz to 19.6 GHz, resulting
in a degradation in absorption. This was due to the fact that the real part of the input
impedance dropped below 200 Ω in this frequency range, while the imaginary part only
underwent a slight change, as depicted in Figure 5c.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 12 
 

 

4 8 12 16 20 24
-300

-200

-100

0

100

200

300

400

500

Z 
(Ω

)

f (GHz)

  TE_0° Re{Z}
  TE_0° Im{Z}

  TE_30° Re{Z}
  TE_30° Im{Z}

  TE_45° Re{Z}
  TE_45° Im{Z}

  TE_60° Re{Z}
  TE_60° Im{Z}

 
4 8 12 16 20 24

-300

-200

-100

0

100

200

300

400

500

Z 
(Ω

)

f (GHz)

  TM_60° Re{Z}
  TM_60° Im{Z}

  TM_45° Re{Z}
  TM_45° Im{Z}

  TM_30° Re{Z}
  TM_30° Im{Z}

  TM_0° Re{Z}
  TM_0° Im{Z}

 
(a) (b) 

Figure 4. Input impedance of the structure III with respect to incident angles for (a) TE and (b) TM 
polarizations. 

2.2. Design of the Compensation Layer 
To improve angular stability and further enhance the bandwidth of the initial ab-

sorber (structure III), a compensation dielectric slab was introduced on top of the absorber. 
This compensation layer can be considered as an impedance matching layer, and thus its 
thickness (hs) was determined according to the cancellation of reflections from its two in-
terfaces A and B, as shown in Figure 5a. The thickness of the slab is thus given as ℎ௦ = 𝜆଴4 1ඥ𝜀௥ − 𝑠𝑖𝑛ଶ 𝜃 (2)

where λ0 is the center frequency of the interested band, and εr is the relative dielectric 
constant of the slab. Here, a FR4 substrate was chosen as the compensation slab, with an 
interested frequency band of (4.0–24.0) GHz. Thus, the thickness of the slab was calculated 
as hs = 2.75 mm, but for fabrication tolerance and overall thickness consideration, a 2.5 
mm-thick FR4 slab was used as the compensation layer. However, when the compensation 
layer was introduced, the reflection coefficient of the FSS absorber (shown in Figure 5b) 
became larger than −10 dB in the frequency range from 10.1 GHz to 19.6 GHz, resulting in 
a degradation in absorption. This was due to the fact that the real part of the input imped-
ance dropped below 200 Ω in this frequency range, while the imaginary part only under-
went a slight change, as depicted in Figure 5c. 

 4 8 12 16 20 24
-20

-15

-10

-5

0

|S
11

| (
dB

)

f (GHz)

  Structure III + FR4 
  Structure IV + FR4 

 
4 8 12 16 20 24

-400

-200

0

200

400

600

Z 
(Ω

)

f (GHz)

 Structure III + FR4 Re{Z}
 Structure III + FR4 Im{Z}

 Structure IV + FR4 Re{Z}
 Structure IV + FR4 Im{Z}

 
(a) (b) (c) 

Figure 5. (a) Schematic diagram of reflection and transmission of electromagnetic waves, (b) the 
reflection coefficient, and (c) input impedance of the whole structure. 

To tackle this problem, the real part of the input impedance should be increased. The 
effective resistance of a resistive film FSS depends on factors such as the unit cell pattern, 
sheet resistance, and current distribution. Since the impedance matched well outside the 
frequency range of 10.1–19.6 GHz, a better option for improving impedance matching 
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To tackle this problem, the real part of the input impedance should be increased.
The effective resistance of a resistive film FSS depends on factors such as the unit cell
pattern, sheet resistance, and current distribution. Since the impedance matched well
outside the frequency range of 10.1–19.6 GHz, a better option for improving impedance
matching within this band was to alter the unit cell pattern and, consequently, the current
distribution. Therefore, the one-order Chinese knot in the FSS unit cell was modified to
a second-order Chinese knot, while the other configuration remains the same (structure
IV), as shown in Figure 6a. The reflection coefficient and input impedance of the modified
FSS absorber (structure IV + FR4) are presented in Figure 5b,c, respectively. It is evident
that the impedance matches well in the frequency range of 3.4–22.0 GHz (146.4%), except
for around 6.5 GHz. However, when the incident angle increased to 45◦, the reflection
coefficient for TE polarization increased beyond −7.0 dB around 20.3 GHz, as illustrated in
Figure 6b, thereby reducing the absorption bandwidth of the absorber.
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absorber at incident angle of 45◦ (b).

Without changing the thickness of the compensation layer, only varying the dielectric
constant of the compensation slab did not effectively solve these problems, as revealed by
Figure 7a,b. Instead, splitting the compensation layer into two slabs with different thickness
and dielectric constant was explored, which could introduce additional reflections that
cancel each other at the interface of the absorber. By employing a FR4 substrate with a
thickness of 1.5 mm as one slab, the dielectric constant of another slab with a thickness of
1 mm was determined by a parameter sweep, and the results are provided in Figure 8a,b. It
revealed that a substrate with a dielectric constant of 2.5 can meet the requirements of a
broad bandwidth and angular stability. Thus, the PMMA material was chosen as another
slab for compensation layer.
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2.3. Effects of Patches on the Absorber

The rectangular patches formed where the second-order Chinese knot meet the cross.
The effects of these patches dimension size on the absorber were investigated. Three cases
with different patches are depicted in Figure 9a. All of the patches in structures SO-I and
SO-III had the same dimension size, while the dimension size of the patches in structure SO-
II were different. The results in Figure 9b,c reveal that the patches with different dimension
sizes improved the impedance matching around 6.5 GHz and slightly shifted the upper
cutoff frequency higher.
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Finally, all the structural parameters of the final absorber structure (shown in Figure 1)
were optimized by parameter-sweeping and listed in Table 1.

Table 1. Optimized parameters of the proposed FSS Absorber.

Parameters Values (mm) Parameters Values (mm)

P 10 n 1.9
a 9.1 h1 5.5
b 0.25 h2 0.175
c 0.25 h3 1
g 0.3 h4 1.5
m 0.8 Sheet resistance 36 Ω/sq

3. Performance Evaluation of the Absorber
3.1. Angular Stability of the Absorber

Achieving incident angle stability and polarization insensitivity is crucial for the design
of an effective microwave absorber. It is important to consider that electromagnetic waves
can approach the absorber from various directions. Figure 10 shows the effect of different
incidence angles on the absorptivity of the absorber in TE and TM polarization modes.
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At normal incidence, the proposed FSS absorber demonstrated exceptional performance,
achieving over 90% wave absorption within the frequency range of 3.1–22.1 GHz, with
a relative bandwidth of 150.8% for both TE and TM polarizations. Further highlighting
its robustness, the absorber maintained an absorptivity of more than 80% within the
frequency range of 4.4–19.1 GHz, even under 45◦ oblique incidence, for both polarizations.
In particular, for TM polarization waves, the absorber showed an absorption angle stability
of 80% at up to 60◦, while maintaining the bandwidth from 8.0 to 22.6 GHz. These results
clearly demonstrate that the proposed absorber achieves excellent incident angle stability
and polarization insensitivity across an ultrawide frequency range. It effectively absorbs
incident waves regardless of the direction and polarization, making it highly suitable for
diverse microwave applications.
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3.2. Effects of Sheet Resistance Fluctuation on the Absorber

Taking into account the inherent uncertainty associated with the sheet resistance
(Rs) of a physical ITO material, which may vary due to processing and fabrication, its
impact on the absorption rate was investigated, and results are shown in Figure 11. As
the sheet resistance decreased from 36 Ω/sq to 26 Ω/sq, the absorption rate experienced
a decline, falling below 90% but remaining above 80% within the frequency range of
4.2–9.9 GHz. However, it is important to note that the absorber maintained its exceptional
performance, consistently achieving over 90% absorption beyond this band. Conversely,
increasing the square resistance from 36 Ω/sq to 45 Ω/sq had a minimal effect on the
absorber’s 90% absorption bandwidth, which remained nearly unchanged. The remarkable
characteristics of the proposed absorber lies in its ability to sustain at least 80% absorption
even when confronted with significant sheet resistance fluctuations, ranging from 26 Ω/sq
to 66 Ω/sq, across an ultrawide band spanning from 3.5 GHz to 22.4 GHz. This attribute
holds remarkable importance in resistive film absorber design, as resistive film fabrication
often leads to notable variations in sheet resistance within a relatively large range [22].
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3.3. Thickness of the Absorber

The thickness of the proposed absorber is 8.21 mm, about 0.085 λL. According to
Rozanov’s investigation, the theoretical minimum thickness of a nonmagnetic absorber is
given as [19]

RLh =

∣∣∫ ∞
0 ln|S11(λ)|dλ

∣∣
2π2 (3)

where |S11(λ)| is the reflection coefficient as a function of wavelength. Using the reflection
coefficient obtained, the minimum thickness of the absorber is about 7.60 mm. Thus, the
overall thickness of the proposed absorber is approximately 1.08 times the theoretical limit,
making it advantageous for applications with limited space or where a thinner design
is desired.

4. Experiment Verification

To experimentally verify the absorber design, a prototype of 29 × 29 cells with di-
mensions of 300 mm × 300 mm × 8.21 mm was fabricated, as shown in Figure 12a. The
measurement was conducted in an anechoic chamber, in accordance with the method
described in [23], and the measurement setup is shown in Figure 12b. Two groups of
wideband horn antennas were used to transmit and receive the signal. Those antennas
were placed 1.5 m away from the absorber. The S-parameters were measured by an Agilent
E8363C vector network analyzer.
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The measured absorption rate in comparison with the simulation for normal incidence
is illustrated in Figure 13a,b. Good agreements are observed between them. The measured
90% absorption bandwidth was 3.1–21.1 GHz with good polarization independence. The
bandwidth shrinks by approximately 1.0 GHz more at a high frequency than the design,
mainly due to the fabrication tolerance.
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with a fractional bandwidth of 150.8%. This expanded bandwidth allows for a more effi-
cient absorption over a broader frequency range. In terms of thickness, the proposed ab-
sorber has a thickness of 0.085 λL, which is relatively thin compared to the absorbers uti-
lizing multiple FSS layers. In summary, the proposed absorber exhibits significant ad-
vantages in terms of overall performance, including bandwidth, angular stability, and 
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Figure 14 depicts the measured absorption rate with respect to the incident angle for
both TE and TM polarizations. It is evident that the measured 80% absorption rate covers
a wide band of 4.4–20.3 GHz (128.7%) at an incident angle of θ = 45◦ for both TE and TM
polarizations. In addition, the 80% absorption angular stability of TM polarization reached
up to 60◦ while maintaining the broad bandwidth from 8.3 GHz to 21.5 GHz. The measured
results are in good agreements with the simulations.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 12 
 

 

The measured absorption rate in comparison with the simulation for normal inci-
dence is illustrated in Figure 13a,b. Good agreements are observed between them. The 
measured 90% absorption bandwidth was 3.1–21.1 GHz with good polarization inde-
pendence. The bandwidth shrinks by approximately 1.0 GHz more at a high frequency 
than the design, mainly due to the fabrication tolerance. 

2 4 6 8 10 12 14 16 18 20 22 24
60

70

80

90

100

A
 (%

)

f (GHz)

  Measurement
  Simulation

 
2 4 6 8 10 12 14 16 18 20 22 24

60

70

80

90

100

A
 (%

)

f (GHz)

 Measurement
 Simulation

 
(a) (b) 

Figure 13. Simulated and measured absorption rate under normal incidence for (a) TE and (b) TM 
polarizations. 

Figure 14 depicts the measured absorption rate with respect to the incident angle for 
both TE and TM polarizations. It is evident that the measured 80% absorption rate covers 
a wide band of 4.4–20.3 GHz (128.7%) at  an incident angle of θ = 45° for both TE and TM 
polarizations. In addition, the 80% absorption angular stability of TM polarization 
reached up to 60° while maintaining the broad bandwidth from 8.3 GHz to 21.5 GHz. The 
measured results are in good agreements with the simulations. 

2 4 6 8 10 12 14 16 18 20 22 24 26
60

70

80

90

100

A
 (%

)

f (GHz)

 TE_0°
 TE_30°
 TE_45°
 TE_60°

 
2 4 6 8 10 12 14 16 18 20 22 24 26

60

70

80

90

100

A
 (%

)

f (GHz)

 TM_0°  
 TM_30°
 TM_45°
 TM_60°

 
(a) (b) 

Figure 14. Measured absorption rate with respect to the incident angle for (a)TE and (b) TM polari-
zations. 

The performance of the proposed absorber was compared with the related studies 
reported in the literature, as shown in Table 2. Compared to other single-layer FSS absorb-
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Figure 14. Measured absorption rate with respect to the incident angle for (a)TE and (b) TM polarizations.

The performance of the proposed absorber was compared with the related studies
reported in the literature, as shown in Table 2. Compared to other single-layer FSS absorbers,
the proposed absorber offers a wider bandwidth, reaching from 3.1 GHz to 22.1 GHz, with
a fractional bandwidth of 150.8%. This expanded bandwidth allows for a more efficient
absorption over a broader frequency range. In terms of thickness, the proposed absorber
has a thickness of 0.085 λL, which is relatively thin compared to the absorbers utilizing
multiple FSS layers. In summary, the proposed absorber exhibits significant advantages
in terms of overall performance, including bandwidth, angular stability, and thickness,
particularly when compared to absorbers that utilize only a single-FSS layer.

Table 2. Comparison between proposed and other FSS-based absorbers.

Ref. BW (A ≥ 90%) FBW(%) Thickness
(λL) FSS Layer Compensation

Layer
Angular Stability/FBW

(A ≥ 80%)

[11] 2.0–23.0 168.0% 0.10 3 - 45◦/168.0%
[12] 2.8–20.6 152.0% 0.115 2 - 60◦/130.0%
[13] 0.45–2.34 135.5% 0.069 1 no 30◦/135.5%
[14] 4.0–17.2 124.5% 0.080 1 no 40◦/110.0%
[15] 2.3–13.3 141.0% 0.138 1 yes 45◦/107.5%
[17] 5.6–29.2 135.5% 0.091 1 yes 45◦/135.5%

This work 3.1–22.1 150.8% 0.085 1 yes 45◦/124.6%

5. Conclusions

This paper presents a novel single-layer FSS ultra-broadband thin absorber that ex-
hibits remarkable performance in terms of angular stability, polarization insensitivity, and
compactness. The designed FSS unit cell, consisting of a second-order Chinese knot and a
cross, enables diverse current paths and multiple resonances in a wide frequency band. To
enhance the absorber’s performance, a compensation layer composed of FR4 and PMMA
slabs with different thickness was added. This addition further improved the absorber
bandwidth and angular stability.

The simulation results demonstrate the exceptional capabilities of the proposed ab-
sorber. It achieved an absorption rate exceeding 90% within the frequency range of
3.1–22.1 GHz, effectively covering the S to K-bands. Importantly, even when subjected to an
oblique incidence of 45◦, the absorber maintained an 80% absorption rate in the frequency
range of 4.4–20.3 GHz for both TE and TM polarizations. The total thickness of the FSS
absorber was 1.08 times the Rozanov limit, making it a compact design. A prototype of the
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proposed absorber has been fabricated and measured, showing good agreement with the
simulation results. The comprehensive performance of the proposed absorber surpasses
the related designs reported in the literature, offering comparable advantages.

Notably, it is possible to convert the proposed absorber into a transparent variant. This
can be achieved by substituting the FR4 with PMMA material, replacing the PMI foam with
air, and exchanging the metallic ground plate with an ITO film that possesses a small sheet
resistance (e.g., 5 Ω/sq). Although the performance of the transparent absorber variant is
slightly inferior to the original proposed absorber, its transformation opens up possibilities
for diverse applications.

In summary, the compact size and exceptional performance of the proposed absorber
make it a promising candidate for various applications, including electromagnetic interfer-
ence suppression, radar cross-section reduction, and energy harvesting.
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